Graduate Program ARCHEO 3D Imaging and Geometric Morphometrics

2D Data acquisition

Antoine SOURON

Day 1 (23/06/2022)

D'Arcy Thompson

3D Imaging and Morphometrics Graduate Program

Principles of trigonometry

JOURNAL OF MORPHOLOGY 232:107-132 (1997)

Thank you Pythagore!!!

Slide after Luc Doyon 1/34

Scaling of the Mandible in Squirrels

WILLIAM A. VELHAGEN AND V. LOUISE ROTH* Zoology Department, Duke University, Durham, North Carolina 27708–0325

	2D	3D
Landmarks	Photographs Projected 3D models	Microscribe 3D models
Curves of semi-landmarks	Photographs Projected 3D models	3D models Microscribe
Surfaces of semi-landmarks		3D models Microscribe

3D models > surface scanner, CT scan, photogrammetry, microscopy...

2D data acquisition – Photography

- Portable
- Fast

- Repeatability
- Only 2D

2D data acquisition – Photography

- **Stability** (use a tripod and a remote control or self-timer)
- **Lighting** (avoid flash, use oblique lights)
 - **Orientation and scale**
 - camera angle, table level
 - standardized object orientation
 - scale
- Avoid distorsion (optical and perspective)
- Depth of field

Optical distorsion (> lens)

2D data acquisition – Photography

Université Bordeaux

Lens distorsion in %

Zoom:

intermediate focal lengths show little distorsion

Fixed-focus length from 35 to 85 mm => Very little distorsion

Smallest distorsion in the image center

Perspective distorsion (> position of lens in relation to the object)

2D data acquisition – Photography

1 cm

(c)

 $5 \rightarrow 6 | 6 \rightarrow 7 | 7 \rightarrow 8 | 8 \rightarrow 1$ 21 18 11 23 24 30 28 equidistant semilandmarks

Cucchi et al., 2017

Outline analyses using landmarks and semi-landmarks curves

2D data acquisition – Photography RTI

RTI = Reflectance Transformation Imaging

> a series of photographs taken with different lighting positions

Allows highlighting of all morphological details

Relevant for engravings, surface modifications, shiny stone tools, etc.

STANDARD DIGITAL PHOTOGRAPH

ENHANCED VERSION OF RTI NORMALS IMAGE

Looten, 2022

3D data acquisition – Microscribe

Microscribe

3D landmarks

Demonstration Monday afternoon!

3D data acquisition – Microscribe

International Journal of Osteoarchaeology Int. J. Osteoarchaeol. 21: 535–543 (2011) Published online 22 February 2010 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/0a.1156

> Comparison of Coordinate Measurement Precision of Different Landmark Types on Human Crania Using a 3D Laser Scanner and a 3D Digitiser: Implications for Applications of Digital Morphometrics

S. B. SHOLTS,^a L. FLORES,^a P. L. WALKER^a AND S. K. T. S. WÄRMLÄNDER^{a,b*}

- ^a Department of Anthropology, University of California, Santa Barbara, CA 93106, USA
- ^b Division of Biophysics, Arrhenius Laboratories, Stockholm University, 106 91 Stockholm, Sweden

Sholts et al., 2011

- Precise
- Fast

- Limited data
- Heavy
- Size of specimens limited by arm length

3D data acquisition – Microscribe

Also possible for curves and surfaces but time-consuming

Mallison et al., 2009

3D data acquisition – Surface scanner

Example: NextEngine

- Precise
- Light

[€

- ± automatic
- Surface and texture

- Sensible
- Slow

3D data acquisition – Photogrammetry

3D Imaging and Morphometrics Graduate Program

Université BORDEAUX

3D model of a canid cranium

distance (mm)

Evin et al., 2016

3D data acquisition – Photogrammetry

- Portable
- Surface and texture

- Repeatability
- Slow

- High-resolution
- External and inner structures

- Expensive
- Non portable

Micro CT scan

Suid petrosal bone

Segmented inner ear

3D Imaging and Morphometrics Graduate Program

3D landmarks

3D landmarks and curves of semi-landmarks

Lebrun et al., 2010

Grohé et al., 2016

2D and 3D data acquisition – Microscopy

Example, confocal microscope surface 3D with very high resolution

Bite mark of an extant lion on a cervid bone

2D and 3D data acquisition – Microscopy

Bite marks of lions versus hyaenas

Cut marks with basalt and quarztite stone tools

Palomeque-González et al., 2017

- Truly 2D objects
- Logistical limitations (lack of equipments, access to specimens...)
- Time limitations
- Large sample sizes
- Low-cost methods
- Comparability of data

2D versus 3D

Can morphotaxa be assessed with photographs? Estimating the accuracy of two-dimensional cranial geometric morphometrics for the study of threatened populations of African monkeys

Andrea Cardini^{1,2} | Yvonne A. de Jong³ | Thomas M. Butynski³

« By applying a range of tests to compare ventral views of adult crania measured in both 2D and 3D, we show that, despite inacurracies accounting for up to one-fourth of individual shape differences, results in 2D almost perfectly mirror those in 3D » Cardini et al. (2021)

2D versus 3D

3D Imaging and Morphometrics Graduate Program

Université "BORDEAUX

How flat can a horse be? Exploring 2D approximations of 3D crania in equids

Andrea Cardini^{a,b,*}, Marika Chiapelli^a

Cardini & Chiapelli, 2020

2D versus 3D

3D Imaging and Morphometrics Graduate Program

Cardini & Chiapelli, 2020

26/34

On the Misidentification of Species: Sampling Error in Primates and Other Mammals Using Geometric Morphometrics in More Than 4000 Individuals

Andrea Cardini^{1,2} · Sarah Elton³ · Kris Kovarovic³ · Una Strand Viðarsdóttir⁴ · P. David Polly⁵

« the minimum sample sized [sic] required for a study varies across taxa and depends on what is being assessed, but about **25-40 specimens** (for each sex, if a species is sexually dimorphic) may be on average an adequate and attainable **minimum sample size** for estimating the most commonly used shape parameters ».

Collecting data on large samples is usually faster in 2D than in 3D.

Repeatability = quantification of intra-observer error Reproducibility = quantification of inter-observer errors

Error has to be much smaller than the assessed differences!!!

 \Rightarrow the smaller the difference (intra-specific variation, asymmetry...), the smaller the error has to be!

- Repeat data acquisition protocol several times (with enough time between repetition)
- Usually a few specimens repeated 5 to 10 times (choose specimens documenting the disparity within the whole sample)
- If necessary, same thing but with several observers
- Different methods to quantify or visualize variation of:
 - individual landmarks
 - landmark configurations

(see for example Cramon-Taubadel et al., 2007)

• Errors related to different steps of the protocol can be assessed independently (for example in photography)

A few references to go further:

- Arnqvist, G., & Martensson, T. (1998). Measurement error in geometric morphometrics: empirical strategies to assess and reduce its impact on measures of shape. Acta Zoologica Academiae Scientiarum Hungaricae, 44(1-2), 73-96.
- Fruciano, C. (2016). Measurement error in geometric morphometrics. *Development genes and evolution*, 226(3), 139-158.
- von Cramon-Taubadel, N., Frazier, B. C., & Lahr, M. M. (2007). The problem of assessing landmark error in geometric morphometrics: theory, methods, and modifications. *American Journal of Physical Anthropology: The Official Publication of the American Association of Physical Anthropologists*, 134(1), 24-35.

Repeatability

3D landmarks digitized on suid crania 3 specimens repeated 10 times

Souron, 2012 31/34

Repeatability

3D landmarks digitized on suid crania 3 specimens repeated 10 times

32/34

Repeatability and reproducibility

Yang et al., 2022